172 research outputs found

    Radial velocity measurements of a sample of K-giants with the Hobby-Eberly telescope

    Get PDF
    We present motivation and initial results of a large RV survey of K giants aimed at a detection of low-mass companions. The survey, performed with the Hobby-Eberly Telescope, utilizes high resolution (60,000) spectra for high precision radial velocity measurements. The primary goal of the survey is the selection of astrometrically stable reference stars for the Extrasolar Planet Interferometric Survey key project to be carried out with the Space Interferometry Mission

    Tidal interactions of close-in extrasolar planets: the OGLE cases

    Full text link
    Close-in extrasolar planets experience extreme tidal interactions with their host stars. This may lead to a reduction of the planetary orbit and a spin-up of stellar rotation. Tidal interactions have been computed for a number of extrasolar planets in circular orbits within 0.06 AU, namely for OGLE-TR-56 b. We compare our range of the tidal dissipation value with two dissipation models from Sasselov (2003) and conclude that our choices are equivalent to these models. However, applied to the planet OGLE-TR-56 b, we find in contrast to Sasselov (2003) that this planet will spiral-in toward the host star in a few billion years. We show that the average and maximum value of our range of dissipation are equivalent to the linear and quadratic dissipation models of Sasselov (2003). Due to limitations in the observational techniques, we do not see a possibility to distinguish between the two dissipation models as outlined by Sasselov (2003). OGLE-TR-56 b may therefore not serve as a test case for dissipation models. The probable existence of OGLE-TR-3 b at 0.02 AU and the discovery of OGLE-TR-113 b at 0.023 AU and OGLE-TR-132 b at 0.03 AU may also counter Sasselovs (2003) assumption of a pile-up stopping boundary at 0.04 AU.Comment: 7 pages, 4 figure

    Constraining the relative inclinations of the planets B and C of the millisecond pulsar PSR B1257+12

    Full text link
    We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12 in connection with potential violations of the equivalence principle (Abridged).Comment: LaTex2e, 10 pages, 1 table, 3 figures, 17 references. Small stylistic changes. Version to appear in Journal of Astrophysics and Astronomy (JAA

    Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VI. AK Fornacis - a rare, bright K-type eclipsing binary

    Full text link
    We present the results of the combined photometric and spectroscopic analysis of a bright (V=9.14), nearby (d=31 pc), late-type detached eclipsing binary AK Fornacis. This P=3.981 d system has not been previously recognised as a double-lined spectroscopic binary, and this is the first full physical model of this unique target. With the FEROS, CORALIE and HARPS spectrographs we collected a number of high-resolution spectra in order to calculate radial velocities of both components of the binary. Measurements were done with our own disentangling procedure and the TODCOR technique, and were later combined with the photometry from the ASAS and SuperWASP archives. We also performed an atmospheric analysis of the component spectra with the Spectroscopy Made Easy (SME) package. Our analysis shows that AK For consists of two active, cool dwarfs having masses of M1=0.6958±0.0010M_1=0.6958 \pm 0.0010 and M2=0.6355±0.0007M_2=0.6355 \pm 0.0007 M_\odot and radii of R1=0.687±0.020R_1=0.687 \pm 0.020 and R2=0.609±0.016R_2=0.609 \pm 0.016 R_\odot, slightly less metal abundant than the Sun. Parameters of both components are well reproduced by the models. AK For is the brightest system among the known eclipsing binaries with K or M type stars. Its orbital period is one of the longest and rotational velocities one of the lowest, which allows us to obtain very precise radial velocity measurements. The precision in physical parameters we obtained places AK For among the binaries with the best mass measurements in the literature. It also fills the gap in our knowledge of stars in the range of 0.5-0.8 M_\odot, and between short and long-period systems. All this makes AK For a unique benchmark for understanding the properties of low-mass stars.Comment: 9 pages, 11 figures, 3 tables, accpeted for publication in A&

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- I. A sample of systems with components' masses between 1 and 2 M_\odot

    Full text link
    We derive the absolute physical and orbital parameters for a sample of 18 detached eclipsing binaries from the \emph{All Sky Automated Survey} (ASAS) database based on the available photometry and our own radial velocity measurements. The radial velocities (RVs) are computed using spectra we collected with the 3.9-m Anglo-Australian Telescope and its \emph{University College London Echelle Spectrograph} and the 1.9-m SAAO Radcliffe telescope and its \emph{Grating Instrument for Radiation Analysis with a Fibre Fed Echelle}. In order to obtain as precise RVs as possible, most of the systems were observed with an iodine cell available at the AAT/UCLES and/or analyzed using the two-dimensional cross-correlation technique (TODCOR). The RVs were measured with TODCOR using synthetic template spectra as references. However, for two objects we used our own approach to the tomographic disentangling of the binary spectra to provide observed template spectra for the RV measurements and to improve the RV precision even more. For one of these binaries, AI Phe, we were able to the obtain an orbital solution with an RV rmsrms of 62 and 24 m s1^{-1} for the primary and secondary respectively. For this system, the precision in Msin3iM \sin^3{i} is 0.08%. For the analysis, we used the photometry available in the ASAS database. We combined the RV and light curves using PHOEBE and JKTEBOP codes to obtain the absolute physical parameters of the systems. Having precise RVs we were able to reach \sim0.2 % precision (or better) in masses in several cases but in radii, due to the limited precision of the ASAS photometry, we were able to reach a precision of only 1% in one case and 3-5 % in a few more cases. For the majority of our objects, the orbital and physical analysis is presented for the first time.Comment: 16 pages, 2 figures, 6 tables in the main text, 1 table in appendix, to appear in MNRA
    corecore